AP Computer Science A — Unit 10: Recursion

Unit 10 MCQ: Recursion

English name:

This quiz has 12 questions.

1. Consider the following recursive method, which is
intended to display the binary equivalent of a
decimal number. For example, toBinary (100)
should display 1100100.

public static void toBinary(int num) {
if(num < 2) {
System.out.print(num);
} else {
/* missing code */
}

}

Which of the following can replace
/* missing code */ sothat toBinary works as
intended?

(® System.out.print(num % 2);
toBinary(num / 2);

System.out.print(num / 2);
toBinary(num % 2);

System.out.print(num / 2);

toBinary(num / 2);
System.out.print(num % 2);

toBinary(num / 2);
System.out.print(num / 2);

© toBinary(num % 2);
©
®

2. Consider the following recursive method, which is
intended to return a String with any consecutive
duplicate characters removed. For example,
removeDupChars("aabcccd") returns "abcd".

public static String removeDup(String str) {

if(str == null || str.length() <= 1) {
return str;

} else if(str.substring(®,1).equals(

str.substring(1,2))) {

return removeDup(str.substring(1));

} else {
/* missing code */

}

}

Which of the following can replace
/* missing code */ sothat removeDup works as
intended?

@ return removeDup(str.substring(2));

return removeDup(str.substring(1)) +
str.substring(0,1);

str.substring(1,2);

return str.substring(0,1) +

(© return removeDup(str.substring(2)) +

© :
removeDup(str.substring(1));

®

return str.substring(1,2) +
removeDup(str.substring(2));

3. Consider the following method, which is intended to
return the sum of all the even digits in its parameter
num. For example, sumEvens (15555234) should
return 6, the sum of 2 and 4.

/** Precondition: num >= 0 */
public static int sumEvens(int num) {

if(num < 10 && num % 2 == 0) {
return num;
} else if (num < 10) {
return 0;
} else if (num >= 10 && num % 2 == 0) {
/* missing statement */
} else {
return sumEvens(num / 10);
}

}

Which of the following can be used as a replacement
for /* missing statement */ so that the sumEvens
method works as intended?

return sumEvens(num % 10);
return sumEvens(num / 10);
return num % 10 + sumEvens(num % 10);

return num % 10 + sumEvens(num / 10);

®©@ 0@

return num / 10 + sumEvens(num % 10);

Page 1 of 5

AP Computer Science A — Unit 10: Recursion

Unit 10 MCQ: Recursion

English name:

4. Consider the following method.

/** Precondition: n > 0 */
public static void mystery(int n) {

System.out.print(n + " ");
if(n > 1) {
mystery(n - 1);

}

Which of the following best describes the output
produced by the method call mystery(val)?

® All integers from 1 to val, separated by spaces

All integers from val to 1, separated by spaces

by spaces

The digits of val in reverse order, separated by

© The digits of val in their original order, separated
©
spaces

®

The digits of val, then a space, then the first digit
of val

5. Consider the following recursive method

public static String doSth(String str) {
if(str.length() < 1) {

return "";

} else {
return str.substring(0,1) +
doSth(str.substring(1));

}

Which of the following best describes the result of the
call doSth(myString)?

(® The method call returns a String containing the
contents of myString unchanged.

The method call returns a String containing the
contents of myString with the order of the
characters reversed from their order in myString.

The method call returns a String containing all
but the first character of myString.

The method call returns a String containing only
the first and second characters of myString.

The method call returns a String containing only
the first and last characters of myString.

6. Consider the following recursive method.

/** Precondition: n > 0 */
public static int calc(int n) {

if(n <= 9) {
return n;
} else {

return calc(n / 10);

3
}

Which of the following best describes the value
returned by the method call calc(num)?

(® The int value 9

The leftmost digit of num
© The rightmost digit of num
(D The number of digits in num

(B The result of the integer division of num by 10

Page 2 of 5

AP Computer Science A — Unit 10: Recursion English name:

Unit 10 MCQ: Recursion

7. Consider the following mergeSortHe lper method, 8. Consider the following method, which implements a

which is part of an algorithm to recursively sort an
array of integers.

/** Precondition:
* arr.length == temp.length
* (arr.length == 0 or
* 0 <= from <= tO <= arr.length)
*/
public static void mergeSortHelper (
int[] arr,
int from, int to,
int[] temp)

{
if(from < to) {
int middle = (from + to) / 2;
mergeSortHelper(arr,from,middle, temp);
mergeSortHelper(arr,middle+1, to, temp);
merge(arr, from,middle, to, temp);
}

The merge method is used to merge two halves of an
array (arr [from] through arr[middle], inclusive,
and arr[middle+1] through arr[to], inclusive)
when each half has already been sorted into ascending
order. For example, consider the array arri, which
contains the values {1, 3, 5, 7, 2, 4, 6, 8}.
The lower half of arr1 is sorted in ascending order
(elements arr1[@] through arr1[3], or
{1, 3, 5, 73}),asisthe upper half of arri
(elements arri1[4] through arr1[7], or
{2, 4, 6, 8}).The array will contain the values
{1, 2, 3, 4, 5, 6, 7, 8} after the method call
merge(arrl,0,3,7, temp). The array temp is a
temporary array declared in the calling program.
Consider the following segment, which appears in a
method in the same class as mergeSortHelper and
merge.

int[] arri {9, 1, 3, 5, 4);

int[] temp = new int[arrl.length];

mergeSortHelper(arrl,0,arrl. length-1, temp);

Which of the following represents the arrays merged
the first time the merge method is executed as a result
of the code segment above?

® {93} and {1} are merged to form {1, 9}
{1, 9%} and {3} are merged to form {1, 3, 9}

© {1, 9} and {5, 4} are merged to form
{1, 4, 5, 9}

©

®

{1, 3, 9} and {5} are merged to form
{1, 3, 5, 9}

{1, 3, 9} and {4, 5} are merged to form
{1, 3, 4, 5, 9}

recursive binary search.

/** Returns an index in arr where val

* appears, if val appears in arr
between arr[low] and arr[high],
inclusive; otherwise returns -1.
Preconditions:

arr is sorted in ascending order,

low >= 0, high < arr.length,
arr.length > 0

L

*/
public static int bSearch(int[] arr,
int low, int high, int val) {
if(low > high) {
return -1;
3

int middle = (low + high) / 2;
if(val == arr[middle]) {

return middle;
} else if(val < arr[middle]) {

return bSearch(arr, low,middle-1,val);
} else {

return bSearch(arr,middle+1, high,val);
1

}

The following code segment appears in a method in the
same class as bSearch.

int[] arr = {2, 3, 12, 34, 54};
int result =
binaryS(arr,0,arr.length-1,5);

If the first call to bSearch is the call in the code
segment above, with low = 0 and high = 4, which, if
any, of the following shows the values of low and high
when bSearch is called for the third time?

low = @, high =1
low = 0, high = 2
low = 1, high = 1
low = 2, high = 1

@O 0@

The method returns to the calling code segment
before the third call to bSearch.

Page 3 of 5

AP Computer Science A — Unit 10: Recursion

Unit 10 MCQ: Recursion

English name:

9. Consider the following method, which implements a
recursive binary search.

/** Returns an index in arr where the value
* X appears if x appears in arr between

* arr[left] and arr[right], inclusive;
* otherwise returns -1.

* Preconditions:

* arr is sorted in ascending order,
* left >=0, right < arr.length,

* arr.length > 0

*/

public static int bSearch(int[] arr,
int left, int right, int x)
{

if(right >= left) {

int mid = (left + right) / 2;
if(arr[mid] == x) {

return mid;
} else if(arr[mid] > x) {

return bSearch(arr, left,mid-1,x);
} else {

return bSearch(arr,mid+1, right, x);
}

}

return -1;

}

The following code segment appears in a method in the
same class as bSearch.
int target = 10;
int[] arrwWithDups =
{2, 3, 7, 8, 10, 10, 10, 20};
int arrIndex = bSearch(
arrwithDups,
0,arrwWithDups. length-1,
target);

What is the value of arrIndex after the code segment
has been executed?

4
5

10

@O 0>

10. Consider the following method, which implements a
recursive binary search.

/** Returns an index in thelList where val
* appears, if val appears in thelist

* between the elements at indices low and
* high, inclusive; otherwise returns -1.
* Preconditions:

* theList is sorted in ascending order;
* low >=0, high < thelList.size(),

* theList.size() > 0

*/

public static int bSearch(
ArrayList<Integer> thelList,
int low, int high, int val)

if(low > high) {
return -1;
1

int middle = (low + high) / 2;

if(val == theList.get(middle)) {
return middle;
}else if(val<theList.get(middle)){
return bSearch(thelList,
low, middle-1, val);
} else {
return bSearch(thelList,
middle+1, high, val);

}

The following code segment appears in a method in the
same class as bSearch.
ArraylList<Integer> thelList =
new ArraylList<Integer>();
for(int k = 10; k < 65; k = k + 5) {
theList.add(k);
1

int result = bSearch(thelist,
0, theList.size()-1,45);

Including the call to bSearch in the last statement of
the given code segment, how many times will bSearch
be called before a value is returned?

1

@O0 ®>

0 ~ W N

Page 4 of 5

AP Computer Science A — Unit 10: Recursion

Unit 10 MCQ: Recursion

English name:

11. Consider the following method, which implements a
recursive binary search.

/** Returns an index in arr where the value

* str appears if str appears in arr
between arr[left] and arr[right],
inclusive; otherwise returns -1.
Preconditions:

arr is sorted in ascending order,

left >=0, right < arr.length,
arr.length > 0

L

/

public static int bSearch(String[] arr,
int left, int right, String str)
{

if(right >= left) {
int mid = (left + right) / 2;
if(arr[mid].equals(str)) {
return mid;
} else if(arr[mid].compareTo(str)>0) {
return bSearch(arr, left,mid-1,str);
} else {
System.out.printin("right");
return bSearch(arr,mid+1, right, str);
}
}

return -1;

}

The following code segment appears in a method in the
same class as bSearch.

String[] words = { "arc", "bat", "cat",
"dog", neggn, nfitn’ ngapn, "hat"};
int index = bSearch(words,
0, words.length-1, "hat");

How many times will "right" be printed when the
code segment is executed?

1

™o 0®>

2
3
7
8

12. Consider the following method, which implements a
recursive binary search.

/** Returns an index in nums where val
* appears, if val appears in nums

* between nums[lo] and nums[hi],

* inclusive; otherwise returns -1.

* Preconditions:

* theList is sorted in ascending order;
* lo >=0, hi < nums.length,

* nums. length > 0@

*/

public static int bSearch(int[] nums,
int lo, int hig, int val)

{
if(hi > lo) {
int mid = (lo + hi) / 2;
if(nums[mid] == val) {
return midd;
}
if(nums[mid] > target) {
return bSearch(nums, 1lo, mid-1, val);
} else {
return bSearch(nums, mid+1, hi, val);
}
}
return -1;
}

The following code segment appears in a method in the
same class as bSearch.

int target

int[] nums
{2, 4, 6, 8, 10, 12, 14, 16, 18, 20},

int tIndex =
bSearch(nums, 0, nums. length-1, target);

3;

Including the call to bSearch in the last statement of
the given code segment, how many times will bSearch
be called as a result of executing the code segment
above?

1

@O0 ®e
a b WO N

Page 5 of 5

